From Horn Strong Backdoor Sets to Ordered Strong Backdoor Sets
نویسندگان
چکیده
Identifying and exploiting hidden problem structures is recognized as a fundamental way to deal with the intractability of combinatorial problems. Recently, a particular structure called (strong) backdoor has been identified in the context of the satisfiability problem. Connections has been established between backdoors and problem hardness leading to a better approximation of the worst case time complexity. Strong backdoor sets can be computed for any tractable class. In [1], a method for the approximation of strong backdoor sets for the Horn-Sat fragment was proposed. This approximation is realized in two steps. First, the best Horn renaming of the original CNF formula, in term of number of clauses, is computed. Then a Horn strong backdoor set is extracted from the non Horn part of the renamed formula. in this article, we propose computing Horn strong backdoor sets using the same scheme but minimizing the number of positive literals in the non Horn part of the renamed formula instead of minimizing the number of non Horn clauses. Then we extend this method to the class of ordered formulas [2] which is an extension of the Horn class. This method insure to obtain ordered strong backdoor sets of size less or equal than the size of Horn strong backdoor sets (never greater). Experimental results show that these new methods allow to reduce the size of strong backdoor sets on several instances and that their exploitation also allow to enhance the efficiency of satisfiability solvers.
منابع مشابه
Detecting Backdoor Sets with Respect to Horn and Binary Clauses
We study the parameterized complexity of detecting backdoor sets for instances of the propositional satisfiability problem (SAT) with respect to the polynomially solvable classes horn and 2-cnf. A backdoor set is a subset of variables; for a strong backdoor set, the simplified formulas resulting from any setting of these variables is in a polynomially solvable class, and for a weak backdoor set...
متن کاملBackdoors into Heterogeneous Classes of SAT and CSP
In this paper we extend the classical notion of strong and weak backdoor sets by allowing that different instantiations of the backdoor variables result in instances that belong to different base classes; the union of the base classes forms a heterogeneous base class. Backdoor sets to heterogeneous base classes can be much smaller than backdoor sets to homogeneous ones, hence they are much more...
متن کاملUpper and Lower Bounds for Weak Backdoor Set Detection
We obtain upper and lower bounds for running times of exponential time algorithms for the detection of weak backdoor sets of 3CNF formulas, considering various base classes. These results include (omitting polynomial factors), (i) a 4.54 algorithm to detect whether there is a weak backdoor set of at most k variables into the class of Horn formulas; (ii) a 2.27 algorithm to detect whether there ...
متن کاملBackdoor Trees
The surprisingly good performance of modern satisfiability (SAT) solvers is usually explained by the existence of a certain “hidden structure” in real-world instances. We introduce the notion of backdoor trees as an indicator for the presence of a hidden structure. Backdoor trees refine the notion of strong backdoor sets, taking into account the relationship between backdoor variables. We prese...
متن کاملBackdoor Treewidth for SAT
A strong backdoor in a CNF formula is a set of variables such that each possible instantiation of these variables moves the formula into a tractable class. The algorithmic problem of finding a strong backdoor has been the subject of intensive study, mostly within the parameterized complexity framework. Results to date focused primarily on backdoors of small size. In this paper we propose a new ...
متن کامل